Tag Archives: ROW

Reduced Congestion?

Unfortunately, the often promised traffic congestion relief has not been experienced by communities that implement LRT. You can look at two local examples (Charlotte & Los Angeles) or even in aggregate across the nation.

  • Charlotte LYNX daily ridership has stagnated at 16,000 over last 7 years, while the population grew 20%. Despite all this investment in LYNX, Charlotte was rated as the having the worse traffic in NC.
  • “L.A. Expo Line hasn’t reduced congestion as promised, a study finds.” article

In North Carolina, Eric Lamb, Manager of the City of Raleigh Office of Transportation, is not so sure about the correlation between transit and congestion abatement. He cites South Boulevard in Charlotte which directly parallels that city’s Lynx Blue Line light rail system. Despite the light rail line … there has been no corresponding reduction in traffic volumes along South Boulevard.

David Hartgen, emeritus professor of transportation studies at UNC Charlotte has authored a study concluding that the Triangle project would not reduce vehicle congestion or travel time, the very benefits supporters tout in seeking the outlay needed to fund the project.


“the presence of the rail line didn’t have a significant or consistent impact on the average speeds of motorists on the freeway and major, nearby surface streets.”L.A. Expo Line hasn’t reduced congestion as promised, a study finds


Generally, one-half or more of the light rail riders formerly rode bus services that were replaced by the rail service. The new ridership attracted to light rail from freeways is in fact quite small compared to the carrying capacity of a single freeway lane. The average freeway lane in US metropolitan areas that have built new light rail systems (since 1980) carries four times as many people per mile as light rail. Even signalized surface streets average twice as many people per mile as light rail. Breach of Faith: Light Rail and Smart Growth in Charlotte

Many advocates continue to claim that light rail reduces traffic congestion. However a closer look at the total national ridership statistics collected by APTA (1990 to 2014) reveals that total ridership over a 25 year period of massive investments in light rail development, the total ridership of local travel as represented by light rail and bus service has remained surprisingly flat at approximately 6 billion annual riders. Even with 28% US population growth, there is no evidence of increased ridership across these two modes of local public transportation. Evidence suggests that bus ridership has merely been shifted towards the more expensive light rail systems and has had no impact on reducing overall traffic congestion. Reference: Quarterly and Annual Totals by Mode – Collected by APTA

lrt_us

This passenger shift from bus transit to rail transit has also been experienced elsewhere. Researchers Shin Lee and Martyn Senior of Cardiff University (Do light rail services discourage car ownership and use? concluded thatGrowing rail shares in the light rail corridors have mainly come from buses and the evidence for light rail reducing car use is less clear. This latter finding is of particular significance, given that a major justification for investment in light rail rather than bus schemes is their presumed ability to bring about major modal shift by attracting substantial numbers of car users.

“There’s just the little problem of the evidence. With few exceptions, studies tend to find limited signs that transit has much of an impact on nearby road congestion. Some places see slight congestion gains or mileage declines in the short term, and well-designed service should lay the foundation for reduced car-reliance in the long run, but the direct transit-traffic link is tenuous at best.” Eric Jaffe, City Labs, Public Transit Does Not Have to Reduce Traffic Congestion to Succeed

So what happens if we don’t build the light rail project?

The mean travel time to work according to the 2014 US Census is 21.5 minutes (Durham County) and 22.0 minutes (Orange County). So what happens to travel times if we do not implement the DOLRT project? According to the DCHC MPO Alternatives Analysis, 2040 travel times using Existing+Committed is projected to be 27 minutes.

MPO_EC_travel_timesYet the proposed DOLRT will take 46 minutes (+10 minutes at terminus) . Now include the waiting time for the next train, the time to get to/from the station (via Park&Ride, Kiss&Ride, bicycle, walking, or bus transfer), it will even be LONGER. So how is this faster than the automobile that it is supposed to replace?

But it’s still more efficient than other alternatives?

The latest revised DOLRT optimistically projects 27,000 daily boardings (with NCCU extension in 2040) during 18.5 hours of daily operation across the 17.7-mile circuit (at a cost of $2.5 BILLION or $141 million per mile) to serve an average 730 passengers per hour (on each track). While advocates will argue that LRT has higher ‘capacity’, it will not necessarily mean that it has higher ‘usage.’ We should not confuse capacity with usage.

So how does that compare to the much hated highway? Well, not so well. A typical highways can accommodate 2,200 vehicles per lane per hour (human driven), utilizing about 5% of roadway capacity. And you can place 4 lanes within the same 50′ right-of-way required for DOLRT.

no_build_cap.jpg

And as autonomous vehicles become pervasive, this capacity will increase significantly, as the vehicles will be able to drive in much closer proximity thereby dramatically increasing the capacity of our existing roadway infrastructure. By using BRT, we will be able to organically add to this capacity; whereas with LRT relying on a roadway of steel rails, we will not, as it will be dedicated solely for the train and we will not be able to share with other autonomous vehicles.

Advertisements