Tag Archives: Light Rail

It’s Safe?

While advocates continue to focus on the word ‘Light’, we really should focus on the word ‘RAIL‘. Yes, Light RAIL Transit is not a freight train (with infrequent daily crossings). However, the 100-ton Light RAIL Transit will snake thru communities on steel wheels and steel tracks, unable to swerve or stop quickly like other vehicles on the road – while crossing each and every crossing gate ~150 times on a typical work day !!!!

SOURCE: Dissected: How’re Ya Dying? Charting transportation mayhem in its many gory varieties.

These Light RAIL Trains ride on steel wheels on steel rails. Even if the brakes are the best and can stop the wheel completely (without derailing), the physics of steel sliding on steel do not change the physics of a 100 ton train’s momentum. Light RAIL Trains traveling at 35 MPH with full brake will travel ~ 428 feet in less than 10 seconds. More than the length of a football field.


SOURCE: Safety Criteria for Light Rail Pedestrian Crossings by DON IRWIN, Tri-County Metropolitan Transportation District of Oregon

“All of these accidents point out the key flaw in rail transit: It is simply not safe to put vehicles weighing hundreds of thousands of pounds in the same streets as pedestrians that weigh 100 to 200 pounds and vehicles that typically weigh a few thousand pounds. Heavy rail (subways and elevated) avoid this flaw by being completely separated from autos and pedestrians, but are still vulnerable to suicides. Light rail, which often operates in the same streets as autos, and commuter trains, which often cross streets, simply are not safe.

Aside from being lighter than railcars (and thus less likely to do harm when they hit you), buses have the advantage that they can stop quicker. Rubber on pavement has more friction than steel wheel on steel rail, and the typical bus has many more square inches of wheel on pavement than a railcar. No matter how good the brakes on the railcar, it is physically impossible for it to stop as fast as a bus, for if the brakes are too good the wheels will just slide.

This is why light rail kills, on average, about three times as many people for every billion passenger miles it carries as buses” — Accidents Point Up Dangers of Rail Transit


Consider, that According to the National Highway Traffic Safety Administration (NHTSA) at U.S. DOT: Three out of four crashes occur within 25 miles of a motorist’s home. Fifty percent of all crashes occur within five miles of home.

A calculation of NHTSA statistics on the rate of deaths per collision in vehicle/vehicle crashes versus the FRA statistics of deaths per collision in vehicle/train crashes reveals: A motorist is almost 20 times more likely to die in a crash involving a train than in a collision involving another motor vehicle. source: Operation Lifesaver, Crossing Collisions & Casualties by Year


Or one can merely view recent incidents and fatalities in other Light RAIL Transit projects across the nation. Light RAIL Transit with at-grade crossings are NOT SAFE. Just GOOGLE “Light Rail Accident” or review this list or this list.


Sustainable Growth?

“Charlotte … perform(s) particularly bad. These systems do not have enough riders to produce the economies of scale that make transit provision by rail significantly less expensive than bus.” — UC Berkeley Urban Densities and Transit: A Multi-dimensional Perspective

While public transit is required to help accommodate the area’s population growth, the central question is what technology do we require to solve what problem? And when do you use one versus the other? So where rail transit might be economically sound by re-purposing along existing rail corridors surrounded by high-density populations, does it make sense to use rail transit all of the time? Is rail the only tool in the transit kit?

What really matters to transit-oriented development [TOD] outcomes?  According to the report, the #1 predictor is strong government support for redevelopment, while the #2 predictor is real estate market conditions.  The #3 predictor is the usefulness of the transit services — frequency, speed, and reliability as ensured by an exclusive right of way. Using rail vs bus technologies does not appear to matter much at all. — yes, great bus service can stimulate development!

There seems to be a continued LRT bias where advocates claim that LRT is the only way to support population growth using TOD (Transit Orient Developments) and that TOD has an inherent affinity for LRT over BRT. However, studies from the US GAO (BUS RAPID TRANSIT, Projects Improve Transit Service and Can Contribute to Economic Development) and a recent study of 21 North American transit corridors across 13 cities by the Institute for Transportation and Development Policy suggests otherwise. The study concluded that strong government support for redevelopment and real estate market conditions were the primary drivers that drove successful TOD. The use of transit technologies (rail vs bus) did not matter at all.

Outside of the US, in cities like Curitiba, Brazil, and Guangzhou, China, there is copious evidence that BRT systems have successfully stimulated development. Curitiba’s early silver-standard BRT corridors, completed in the 1970s, were developed together with a master plan that concentrated development along them. The population growth along the corridor rate was 98% between 1980 and 1985, compared to an average citywide population growth rate of only 9.5%.

Many cities, therefore, consider investing in mass transit to stimulate the hoped-for development. Indeed, a good mass transit investment can be such a catalyst. Yet city planners and politicians, who do not always work closely with transportation professionals, commonly begin to view mass transit in and of itself as a silver-bullet solution for stimulating development. — ITDP study, More Development For Your Transit Dollar

The DOLRT study area projects 32% population growth. It is the lowest projection of the counties and regions in the study, suggesting that there are other population areas that are growing substantially FASTER than the DOLRT corridor.

Based on the Alternative Analysis, the corridor study area is projected by 2035 to have a population density of 4052 ppsm or people per square mile (231K / 57). Using 1/2 mile walk-up radius around each of the 17 proposed stations, approximately 68,000 people will be within walking distance of a station. The national average for public transportation utilization is 5% (Durham 3%). This suggests walk access will be approximately 6800 daily boardings (68K * 5% * 2) rather than the projected 12,180 by GoTriangle in 2040.


“It is broadly accepted that fairly dense urban development is an essential feature for a successful public transit system. Our analysis suggests that light-rail systems need around 30 people per gross acre … (for) cost-effective investments in the US … urban densities are the most critical factor in determining whether investments in guideway transit systems are cost effective” — UC Berkeley Urban Densities and Transit: A Multi-dimensional Perspective

So how much population density do we need to make light rail cost-effective?


Let’s do the math, there are 640 acres in one square mile. So that means we would require a density of 19,200 people per square mile. So with our current 3071 ppsm (175K / 57) along the DOLRT study corridor, that is 16% of the recommended population density. Or stated differently, we would have to reach a population of over 1 million people by 2040 (or today’s entire Wake county population) just within the 57 square mile study corridor.

More Efficient?

Advocates portray the No Build option as perpetuating unsustainable urban sprawl, and that the only option is to build a light rail system. Let’s look at this a little closer.

The latest revised DOLRT  projects 27,000 daily boardings (with NCCU extension in 2040) during 18.5 hours of daily operation across the 17.7 mile circuit (at a cost of $2.5 BILLION or $141 million per mile) to serve an average 730 passengers per hour (on each track). Running 150 train trips per day will result in an average ‘load factor’ of 10 passengers per vehicle mile traveled; or utilize 2% of the 500 passenger capacity heralded by GoTriangle. So for every one train that travels at the cited 500 passenger capacity, there will be ~50 trains running empty. Low capacity utilization is not  environmentally or economically sound.

While advocates will argue that LRT has higher ‘capacity’, it will not necessarily mean that it has higher ‘usage.’ We should not confuse capacity with usage.


So how does that compare to the much hated highway? Well, not so well. A typical highways can accommodate 2,200 vehicles per lane per hour (human driven), utilizing about 5% of roadway capacity. And as autonomous vehicles become pervasive, this capacity will increase significantly, as the vehicles will be able to ‘platoon’ at much closer proximity thereby dramatically increasing the capacity of our existing roadway infrastructure. By using BRT, we will be able to organically add this capacity; whereas with LRT relying on steel rails, we will not, as it will be dedicated to only for the train and we will not be able to share with other autonomous vehicles.


Generally, one-half or more of the light rail riders formerly rode bus services that were replaced by the rail service. The new ridership attracted to light rail from freeways is in fact quite small compared to the carrying capacity of a single freeway lane. The average freeway lane in US metropolitan areas that have built new light rail systems (since 1980) carries four times as many people per mile as light rail. Even signalized surface streets average twice as many people per mile as light rail. — Breach of Faith: Light Rail and Smart Growth in Charlotte

The mean travel time to work according to the 2014 US Census is 21.5 minutes (Durham County) and 22.0 minutes (Chapel Hill), yet the proposed DOLRT will take 46 minutes (+10 minutes at terminus) . Now include the waiting time for the next train, the time to get to/from the station (via Park&Ride, Kiss&Ride, bicycle, walking, or bus transfer), it will even be LONGER. So how is this faster than the automobile that it is supposed to replace?


Articles from local newspapers in the Triangle area.

Articles on other related topics.


The great enemy of the truth is very often not the lie — deliberate, contrived and dishonest —
but the myth — persistent, persuasive, and unrealistic.

Too often we hold fast to the cliches of our forebears.
We subject all facts to a prefabricated set of interpretations.
We enjoy the comfort of opinion without the discomfort of thought.

John F Kennedy, Yale University, June 1962

There are many myths about light rail train projects that are often repeated by light rail advocates that makes it very difficult to have a fact based discussion. This light rail bias has been well documented in grand jury findings and policy studies, yet they continue to persist. Without a fact-based discussion, we will squander large amounts of tax dollars for an inflexible and obsolete light rail system that will not align with high growth areas and new emergent transportation technologies. Here is a partial list of some of these recurring myths.

Who can I talk to and have my voice heard?

Some voices carry more than others. Your elected representatives will listen to you. You have the vote! How can I maximize my voice? Phone calls are heard very loud and clear. Hand written letters are the next best thing. Followed by typed letters delivered by US postal. And lastly email. So while most of us use (myself included) email … your elected representatives prefer to hear from you (literally). So if you want to maximize your impact, please call!