Tag Archives: Congestion

Reports

Below are additional reports and analysis on Light Rail projects in the United States

Advertisements

Sustainable Growth?

“Charlotte … perform(s) particularly bad. These systems do not have enough riders to produce the economies of scale that make transit provision by rail significantly less expensive than bus.” — UC Berkeley Urban Densities and Transit: A Multi-dimensional Perspective

While public transit is required to help accommodate the area’s population growth, the central question is what technology do we require to solve what problem? And when do you use one versus the other? So where rail transit might be economically sound by re-purposing along existing rail corridors surrounded by high-density populations, does it make sense to use rail transit all of the time? Is rail the only tool in the transit kit?

What really matters to transit-oriented development [TOD] outcomes?  According to the report, the #1 predictor is strong government support for redevelopment, while the #2 predictor is real estate market conditions.  The #3 predictor is the usefulness of the transit services — frequency, speed, and reliability as ensured by an exclusive right of way. Using rail vs bus technologies does not appear to matter much at all. — yes, great bus service can stimulate development!

There seems to be a continued LRT bias where advocates claim that LRT is the only way to support population growth using TOD (Transit Orient Developments) and that TOD has an inherent affinity for LRT over BRT. However, studies from the US GAO (BUS RAPID TRANSIT, Projects Improve Transit Service and Can Contribute to Economic Development) and a recent study of 21 North American transit corridors across 13 cities by the Institute for Transportation and Development Policy suggests otherwise. The study concluded that strong government support for redevelopment and real estate market conditions were the primary drivers that drove successful TOD. The use of transit technologies (rail vs bus) did not matter at all.

Outside of the US, in cities like Curitiba, Brazil, and Guangzhou, China, there is copious evidence that BRT systems have successfully stimulated development. Curitiba’s early silver-standard BRT corridors, completed in the 1970s, were developed together with a master plan that concentrated development along them. The population growth along the corridor rate was 98% between 1980 and 1985, compared to an average citywide population growth rate of only 9.5%.

Many cities, therefore, consider investing in mass transit to stimulate the hoped-for development. Indeed, a good mass transit investment can be such a catalyst. Yet city planners and politicians, who do not always work closely with transportation professionals, commonly begin to view mass transit in and of itself as a silver-bullet solution for stimulating development. — ITDP study, More Development For Your Transit Dollar

The DOLRT study area projects 32% population growth. It is the lowest projection of the counties and regions in the study, suggesting that there are other population areas that are growing substantially FASTER than the DOLRT corridor.

Based on the Alternative Analysis, the corridor study area is projected by 2035 to have a population density of 4052 ppsm or people per square mile (231K / 57). Using 1/2 mile walk-up radius around each of the 17 proposed stations, approximately 68,000 people will be within walking distance of a station. The national average for public transportation utilization is 5% (Durham 3%). This suggests walk access will be approximately 6800 daily boardings (68K * 5% * 2) rather than the projected 12,180 by GoTriangle in 2040.

dolrt_population_study

“It is broadly accepted that fairly dense urban development is an essential feature for a successful public transit system. Our analysis suggests that light-rail systems need around 30 people per gross acre … (for) cost-effective investments in the US … urban densities are the most critical factor in determining whether investments in guideway transit systems are cost effective” — UC Berkeley Urban Densities and Transit: A Multi-dimensional Perspective

So how much population density do we need to make light rail cost-effective?

dolrt_population_density

Let’s do the math, there are 640 acres in one square mile. So that means we would require a density of 19,200 people per square mile. So with our current 3071 ppsm (175K / 57) along the DOLRT study corridor, that is 16% of the recommended population density. Or stated differently, we would have to reach a population of over 1 million people by 2040 (or today’s entire Wake county population) just within the 57 square mile study corridor.

A Different Future?

“The future ain’t what it used to be.” Yogi Berra


We are in the midst of a massive revolution that will dramatically transform ground transportation. It is anticipated that autonomous vehicles (or driver-less cars) will be commercially available by 2020, if not sooner. By the time DOLRT is completed, technological advances in personal transportation alternatives will render DOLRT obsolete.

A wave of new transportation technology is coming to Columbus after the city won the federal Smart City Challenge. The grant money will usher in driverless cars but could end the idea of rail as a mass-transit option. “The City of Columbus plans to leap-frog fixed rail” by using new modes of transportation, Columbus says in the U.S. Department of Transportation application. The city last month won a $40 million grant from the U.S. Department of Transportation, besting cities like San Francisco and Portland, Oregon. They already have rail options and still struggle with traffic congestion. Those cities are also larger and attract far more visitors to their cores. The fact that Columbus is without rail might actually have helped its case in the smart-city competition, as it is the test case for new transportation methods that could scale to similar cities.  Columbus is the biggest city in the U.S. to not offer rail service – something like light rail, streetcars, monorail – as a mass transportation option. The city’s application said its bus-based mass transit system, operated by the Central Ohio Transit Authority, can “demonstrate emerging mobility solutions at a lower cost and with greater flexibility than a fixed-rail infrastructure.” — Columbus will ‘leap-frog’ light rail as transit option after Smart City Challenge win

According to Philippe Crist, an economist with the Organization for Economic Co-operation and Development (OECD) “Fleets of shared, self-driving vehicles could indeed remove nine out of every ten vehicles on city streets, eliminating the need for all on-street parking and 80% of off-street parking, according to a recent study by the group.”Urban Transit’s Uncertain Future

Screen Shot 2016-09-02 at 4.31.18 PM.png

The rise of a “taxibot” may further reduce the need for car ownership and enable the sharing of vehicles that make shared, self-driving vehicles possible. According to Emilio Frazzoli, head of Future Urban Mobility for the Singapore-MIT Alliance for Research and Technology  “You couldn’t have imagined this ten years ago when people didn’t have smart phones and mobile computing was not available. Now you have this ability to connect and book a car. You see it with Uber and the proliferation of taxi booking apps or public transportation schedule routing apps, and this is at the same time you have autonomous vehicle technology that is evolving. You can marry the two.” — Urban Transit’s Uncertain Future

LIDAR on chip.001.jpegIf you doubt the accelerating adoption of new technology, it is worth to pause for a moment and consider that the iPhone was introduced in June 2007 and now is a ubiquitous device that has fundamentally transformed entire industries. The mass adoption of new technologies continues to accelerate. One recent estimate suggests that the typical luxury sedan now contains over 100 MB of binary code spread across 50–70 independent computers.

An analysis of the history of technology shows that technological change is exponential, contrary to the common-sense “intuitive linear” view. So we won’t experience 100 years of progress in the 21st century — it will be more like 20,000 years of progress (at today’s rate). — The Law of Accelerating Returns

Imagine a company like Uber or Lyft using self-driving cars and a mobile app to provide point-to-point transportation. So instead of your going to the transportation system (DOLRT station), the transportation system (Uber) comes to you! Just use your mobile app, select your destination, schedule your pick-up time and you will be taken from your front door directly (or even carpooling) to your destination. This would help eliminate the waste of unnecessary side trips, parking, platooned with coordinated traffic signals.

Uber and Gilt are selling passes for unlimited uberPOOL rides in New York City. “The deal is being called a “commute card” and can only be used Monday through Friday during commuting hours (7-10am and 5-8pm) in Manhattan. These are the same hours during which Uber offers $5 flat rate uberPOOL rides in NYC. As a refresher, uberPOOL is Uber’s carpool product where the company matches you with riders headed the same direction … this deal means commuting in an uberPOOL is cheaper than taking the subway.”

Screen Shot 2016-07-12 at 10.06.14 PM

Uber and Lyft are looking beyond competition with traditional taxi services. They may be creating the first practical, affordable personal rapid transit (PRT) systems that will compete with buses. In 2014, Uber launched UberPool, enabling multiple parties to share a ride along similar routes. The following year, the company announced uberCOMMUTE in China, which they described as ” carpooling at the press of a button.” In the U.S., it’s being tested in Chicago. Then, in December, Uber launched uberHOP in Seattle, which operates along pre-selected commuters routes.

Virtually all mass transit systems are publicly subsidized. Farebox revenues rarely cover more than 50 percent of expenses, which are labor and capital-intensive. In Pinellas Park, Florida—a Tampa suburb—has just replaced two bus lines with Uber service, subsidized to the tune of $3 per ride. It’s cheaper than running the buses. The Pinellas Suncoast Transit Authority budgeted $40,000 a year. Running the two bus lines cost four times as much. — Uber and Lyft Revolutionize Public Transit

A recent study by the Boston Consulting Group found the cost of conveying one passenger by an autonomous vehicle would be 35% less than by conventional taxi at the average taxi occupancy rate of 1.2 passengers. Increase an autonomous vehicle’s rate of occupancy to just two passengers and the cost per passenger becomes competitive with mass transit.Urban Transit’s Uncertain Future

Uber-1

“… private companies like Uber, which recently began test-driving its own autonomous vehicle, could drive down the cost of shared transport to such a point that car ownership wouldn’t be worth it.” — Urban Transit’s Uncertain Future

In addition, autonomous vehicles will greatly enhance mobility for transit dependent populations that may be disabled, too young or too old. For example, in the US there are approximately 36 million people with disabilities. Given the mobility and autonomy of this new technology, this will improve utilization of assets like vehicles, roadways and parking lots to further reduce the cost of these services by providing better efficiency.

U.S. transportation chief visits Google to unveil 30-year plan
“We’ve got to look at our own regulatory framework … to make sure we’re being as nimble and flexible and adaptive as we can be. … That’s what the future is demanding,” Foxx said. Foxx and Schmidt took a quick ride in the tiny electric-powered pod that dropped them off at an entrance to the corporate campus. It then drove away on its own. “This is awesome, this is cool,” Foxx remarked as Schmidt and Chris Urmson, the head of Google’s self-driving car project, showed him how it worked.

Autonomous vehicles will be a disruptive innovation with major implications for society. requiring policy makers to address many unresolved questions about their effects. One fundamental question is about their effect on travel behavior. It will be easier to share cars and that this will thus discourage outright ownership and decrease total usage, and make cars more efficient forms of transportation in relation to the present situation. Autonomous vehicles may reduce public transit travel demand, leading to reduced service.

bosch-autonomous-car-technology_100417251_hThink that’s unlikely? Many companies are investing heavily in this area and it will have a massive impact on how we move people (and things). Several companies have already announced that they will have partially autonomous vehicles (Level 3) ready in the next 5-6 years including Audi. Baidu, BMW, Ford, Google, LeTV, Mercedes, Nissan, Tesla, Uber

The avionics system in the F-22 Raptor, the current U.S. Air Force frontline jet fighter, consists of about 1.7 million lines of software code. The F-35 Joint Strike Fighter, scheduled to become operational in 2010, will require about 5.7 million lines of code to operate its onboard systems. And Boeing’s new 787 Dreamliner, scheduled to be delivered to customers in 2010, requires about 6.5 million lines of software code to operate its avionics and onboard support systems.

These are impressive amounts of software, yet if you bought a premium-class automobile recently, ”it probably contains close to 100 million lines of software code,” says Manfred Broy, a professor of informatics at Technical University, Munich, and a leading expert on software in cars. All that software executes on 70 to 100 microprocessor-based electronic control units (ECUs) networked throughout the body of your car. — This Car Runs on Code

Disruptive innovation in terms of low-cost and high-quality can shape the market even before the launch. One such example is the technology developed by a 19-year-old Romanian high-school student, Ionut Budisteanu, who created a camera and radar system for autonomous cars that costs a fraction (10%) of the cost for the existing solutions. Or Edgar Sarmiento, a 24-year-old from Columbia, who designed a self-driving minibus and built it in weeks with Local Motors. Or recent advances by MIT which has reduced the large and expensive LIDAR to lidar-on-a-chip system that is smaller than a dime, has no moving parts, and could be mass produced at a very low cost to be used in self-driving cars, drones, and robots.

 

mit_car

What is an Autonomous Vehicle?

In the United States, the National Highway Traffic Safety Administration (NHTSA) has proposed a formal classification system:

  • Level 0: The driver completely controls the vehicle at all times.
  • Level 1: Individual vehicle controls are automated, such as electronic stability control or automatic braking.
  • Level 2: At least two controls can be automated in unison, such as adaptive cruise control in combination with lane keeping. Many of these features are available in cars today.
  • Level 3: The driver can fully cede control of all safety-critical functions in certain conditions. The car senses when conditions require the driver to retake control and provides a “sufficiently comfortable transition time” for the driver to do so.
  • Level 4: The vehicle performs all safety-critical functions for the entire trip, with the driver not expected to control the vehicle at any time. As this vehicle would control all functions from start to stop, including all parking functions, it could include unoccupied cars.

An increase in the use of autonomous cars would:

  • Increased roadway capacity and reduced traffic congestion due to reduced need for safety gaps and the ability to better manage traffic flow.
  • Reduce total number of cars by increased car-sharing, since an autonomous car can drop off a passenger at one location and go to a different location to pick up another. Also see Uber perpetual rides.
  • Higher speed limit for autonomous cars.
  • Greater efficiency with coordinate platooning using vehicle-to-vehicle and vehicle to infrastructure communications allowing for drafting, better mileage efficiency, faster transit times and coordinated traffic signaling.
  • Time-shifting freight traffic to off-peak hours, reducing congestion during peak travel times and increasing highway capacity.
  • Alleviation of parking scarcity, as cars could drop off passengers, park far away where space is not scarce, and return as needed to pick up passengers.
  • Reduction of physical space required for vehicle parking.
  • Elimination of redundant passengers – the robotic car could drive unoccupied to wherever it is required, such as to pick up passengers or to go in for maintenance. This would be especially relevant to trucks, taxis and car-sharing services.
  • Fewer traffic collisions, since unlike a human driver with limited situational awareness an autonomous car can continuously monitor a broad range of sensors (e.g. visible and infrared light, acoustic incl. ultrasound) both passive and active (LIDAR, RADAR) with a 360° field of view and thus more quickly determine a safe reaction to a potential hazard, and initiate the reaction faster than a human driver.
  • Avoid traffic collisions caused by human driver errors such as tail gating, rubbernecking and other forms of distracted or aggressive driving.
  • Relief of vehicle occupants from driving and navigation chores.
  • Removal of constraints on occupants’ state – in an autonomous car, it would not matter if the occupants were minors, elderly, disabled, unlicensed, blind, distracted, intoxicated, or otherwise impaired.
  • Reduction in the need for traffic police and premium on vehicle insurance.
  • Reduction of physical road signage – autonomous cars could receive necessary communication electronically (although physical signs may still be required for any human drivers).
  • Smoother ride.
  • Reduction in car theft, due to the vehicle’s increased awareness.
  • Removal of the steering wheel and remaining driver interface saves cabin space and allows a cabin design where no occupant needs to sit in a forward facing position

Individual vehicles may also benefit from information obtained from other vehicles in the vicinity, especially information relating to traffic congestion and safety hazards. Vehicular communication systems use vehicles and roadside units as the communicating nodes in a peer-to-peer network, providing each other with information. As a cooperative approach, vehicular communication systems can allow all cooperating vehicles to be more effective and increase efficiency of our existing roadway infrastructure thereby dramatically reducing traffic congestion. According to a 2010 study by the National Highway Traffic Safety Administration, vehicular communication systems could help avoid up to 79% of all traffic accidents.

In 2012, computer scientists at the University of Texas in Austin began developing smart intersections designed for autonomous cars. The intersections will have no traffic lights and no stop signs, instead using computer programs that will communicate directly with each car on the road.

Congestion and traffic operations can be reduced using autonomous vehicle through the use of sensors that can sense traffic flows by monitoring vehicle braking and acceleration through V2V monitoring. V2I monitoring can also be used to improve flow and safety in intersections and high-problem areas. These systems will utilize information from other vehicles, smart traffic systems and other forms of smart infrastructure, allowing for a much higher throughput of traffic and further reducing the risk of accidents through the use of predictive trajectory modeling.

 

Articles

Articles from local newspapers in the Triangle area.

Articles on other related topics.

Charlotte success?

As Charlotte’s LYNX approaches a decade of service (started in Nov 2007), let’s look more closely at this heralded ‘success’. By reviewing the NTD federal filings(Charlotte LYNX ridership data is on tab UPT (Unlinked Passenger Trips), row 663, column CB).

  • 13,362 average daily ridership (workdays and weekend) during Oct 2016 (serving less than 6680 people daily, or less than 1% of Charlotte’s population of 827,000).
  • 13,332 average daily ridership over last 9 years with a flat trend line (despite 20% population growth between 2007 and 2015).

As they say, “a picture is worth a thousand words” …

PastedGraphic-2.png

During this same period Charlotte’s population grew 20% (691K in 2007 to 827K in 2015 per  US Census), with increasing traffic congestion (Study: Charlotte roads, traffic among worst in North Carolina).

It would appear that the only thing that hasn’t grown over the past decade is Charlotte’s LYNX daily ridership. In fact, relative to Charlotte’s ever growing population, LYNX relative riderships (as a percentage of population served) has declined over the past decade.

How did Charlotte get there?

Charlotte’s light-rail line was originally projected to cost an estimated $225 million in 2000. The final cost of the completed project in 2007 was $467 million. Even after adjusting for inflation (2000-2007), that’s a 75% cost overrun. FEIS / DEIS

Citizens attempted to repeal the sales transit tax, but were ultimately defeated after citizen’s campaign was outspent 50:1 by corporate vested interests (like Duke Energy, Wachovia now Wells Fargo, Bank of America, McDonald Transit Associates, Parsons Brinckerhoff, and Siemens). An additional twenty major businesses contributed, all of whom profit from CATS operations according to former city council member Don Reid.

CLT_LYNX

The Charlotte Lynx daily ridership has stagnated 16,000 workday boardings over the last 7 years while the area’s population grew 17%, having no net effect on reducing traffic congestion. Even accounting for ‘choice riders’ those who would give up their cars in favor of Charlotte LYNX, the changes in gasoline prices has had no effect on daily ridership.

CLT_gas_prices

Despite the high costs and low ridership, CATS wants more rail — but doesn’t have any money to pay for it. So it has rolled out a campaign of declaring the light rail a great success, especially in the field of economic development. Of course, in most cases it was the subsidies, not the rail, that stimulated the development, and most likely the development would have taken place somewhere in the region anyway, though perhaps not in that corridor.


“Charlotte … perform(s) particularly bad. These systems do not have enough riders to produce the economies of scale that make transit provision by rail significantly less expensive than bus.”
SOURCE: UC Berkeley Urban Densities and Transit: A Multi-dimensional Perspective


“Future expansion includes plans for light rail, streetcars and bus rapid transit along the corridors in the 2030 Transit Corridor System Plan adopted in 2006 by Metropolitan Transit Commission (MTC). Although build-out of the entire system has been estimated for completion by 2034, by 2013, the Charlotte Area Transit System stated it would likely be unable to fund future transit projects apart from the Blue Line Extension, scheduled to begin construction in early 2014.

Charlotte ranked Worst Traffic In North Carolina according to recent 2015 Urban Mobility Scorecard. Charlotte’s transit also ranked among nation’s worst. New survey puts it at 26th out of 32 big cities for transit quality according to Charlotte Observer (May 14, 2016)

Can some of the Charlotte Area’s Transit System’s ridership woes be blamed on the growing popularity of ride-hailing services like Uber? That’s a question posed in a report from The Charlotte Observer, which notes that in South End — where the nearby light-rail line has been seen as a selling point to attract new residents — many people are choosing the app-based services over public transit.


For much of the past year, ridership on Charlotte Area Transit System buses and the Lynx Blue Line has declined. For the first nine months of the fiscal year, ridership on all CATS services, including buses and the light rail, was down 4.3 percent compared with the same period a year earlier.

Ride-hailing likely isn’t as appealing for areas farther from uptown because of the higher rates. It costs $20 to $25 to take an Uber from uptown to the southern edge of the light-rail line. [emphasis ours: of course, if Uber was 80% subsidized like LYNX, the Uber fare would drop to $4 to $5 fare]

Over the past seven years, ridership at the four Lynx stations in the South End has increased from 1,595 average weekday boardings in March 2009 to 2,057 boardings in March 2016. That’s a 30% increase in seven years. But during the same period, the number of residents has increased at a much faster rate, from 3,400 to 8,000 people (+135%).

Chris Walker, who lives at the Silos South End apartment complex, is one of thousands of people drawn to living within a stone’s throw of the Lynx Blue Line. Walker likes being close to the light-rail line, but he doesn’t actually use it all that much. “I have lived here a year and a half, and I have taken the train twice,” said Walker, whose apartment is less than a quarter-mile from the New Bern light-rail station at the southern-most part of South End. “We Uber instead. For $5, you can get uptown. It’s easy.”

Kaitlin Flanagan, who works in SouthPark, says she sometimes takes the train uptown, but she almost always uses Uber to get home. “I prefer Uber, especially if there is a big event going on,” she said.

Deanna Bencic, who works in south Charlotte, doesn’t take the train to work. And if she’s going out with friends, she doesn’t take the train – even when it’s an option. “If it’s four or five people, then we always use Uber,” she said.

SOURCE: Some Charlotte residents jump on Uber over train in South End


Charlotte facing additional tax revenue shortfalls

CHT_LRT

The Charlotte plan to address the current $22 million budget shortfall includes: Tax-rate increase & service cuts including:

  • closing 311 information service on weekends & holidays
  • resurface about 16.5 fewer miles of streets a year
  • budget cuts for Police and Fire
  • eliminate more than 100 city jobs

In addition, Carlee and his staff, along with the mayor and City Council, have been grappling with unanticipated shortfalls in tax revenue as well as a proposed change in sales-tax sharing that, according to state and city projections, could cost Charlotte an estimated $3 million to $30 million annually.

“On May 6, 2013, a 30-member transit funding task force released a draft report in which they estimated it would cost $3.3 billion to build the remaining transit corridors, and $1.7 billion to operate and maintain the lines through 2024. To fund the build-out by sales taxes alone would require a 0.78 cent increase in the sales tax, which would need to be approved by the state General Assembly. The committee recommended any sales tax increase be limited to 0.5 cent and other methods used to raise funds; In July 2015, CATS reported it lacked the funds to support any future transit projects apart from the already budgeted 2.5-mile long Phase 2 segment of the CityLYNX Gold Line.”


CityLYNX Gold Line facing City budget cuts!
The $75 million the Charlotte City Council approved in 2014 to fund
half the cost of constructing Phase 2 of the City LYNX Gold Line is being threatened.
Due to City budget shortfalls, some Members of City Council are suggesting the $75 million
they already approved for the Gold Line be cut from the budget.


However meritorious the DOLRT may be, we need to think seriously about where the money is going to come from to build and operate it, and we need to have a backup transit plan in the event the money for DOLRT doesn’t materialize.

 

Myths

The great enemy of the truth is very often not the lie — deliberate, contrived and dishonest —
but the myth — persistent, persuasive, and unrealistic.

Too often we hold fast to the cliches of our forebears.
We subject all facts to a prefabricated set of interpretations.
We enjoy the comfort of opinion without the discomfort of thought.

John F Kennedy, Yale University, June 1962

There are many myths about light rail train projects that are often repeated by light rail advocates that makes it very difficult to have a fact based discussion. This light rail bias has been well documented in grand jury findings and policy studies, yet they continue to persist. Without a fact-based discussion, we will squander large amounts of tax dollars for an inflexible and obsolete light rail system that will not align with high growth areas and new emergent transportation technologies. Here is a partial list of some of these recurring myths.

Who can I talk to and have my voice heard?

Some voices carry more than others. Your elected representatives will listen to you. You have the vote! How can I maximize my voice? Phone calls are heard very loud and clear. Hand written letters are the next best thing. Followed by typed letters delivered by US postal. And lastly email. So while most of us use (myself included) email … your elected representatives prefer to hear from you (literally). So if you want to maximize your impact, please call!

Reduced Congestion?

Unfortunately, the often promised traffic congestion relief has not been experienced by communities that implement LRT. You can look at two local examples (Charlotte & Los Angeles) or even in aggregate across the nation.

  • Charlotte LYNX daily ridership has stagnated at 16,000 over last 7 years, while the population grew 20%. Despite all this investment in LYNX, Charlotte was rated as the having the worse traffic in NC.
  • “L.A. Expo Line hasn’t reduced congestion as promised, a study finds.” article

In North Carolina, Eric Lamb, Manager of the City of Raleigh Office of Transportation, is not so sure about the correlation between transit and congestion abatement. He cites South Boulevard in Charlotte which directly parallels that city’s Lynx Blue Line light rail system. Despite the light rail line … there has been no corresponding reduction in traffic volumes along South Boulevard.

David Hartgen, emeritus professor of transportation studies at UNC Charlotte has authored a study concluding that the Triangle project would not reduce vehicle congestion or travel time, the very benefits supporters tout in seeking the outlay needed to fund the project.


“the presence of the rail line didn’t have a significant or consistent impact on the average speeds of motorists on the freeway and major, nearby surface streets.”L.A. Expo Line hasn’t reduced congestion as promised, a study finds


Generally, one-half or more of the light rail riders formerly rode bus services that were replaced by the rail service. The new ridership attracted to light rail from freeways is in fact quite small compared to the carrying capacity of a single freeway lane. The average freeway lane in US metropolitan areas that have built new light rail systems (since 1980) carries four times as many people per mile as light rail. Even signalized surface streets average twice as many people per mile as light rail. Breach of Faith: Light Rail and Smart Growth in Charlotte

Many advocates continue to claim that light rail reduces traffic congestion. However a closer look at the total national ridership statistics collected by APTA (1990 to 2014) reveals that total ridership over a 25 year period of massive investments in light rail development, the total ridership of local travel as represented by light rail and bus service has remained surprisingly flat at approximately 6 billion annual riders. Even with 28% US population growth, there is no evidence of increased ridership across these two modes of local public transportation. Evidence suggests that bus ridership has merely been shifted towards the more expensive light rail systems and has had no impact on reducing overall traffic congestion. Reference: Quarterly and Annual Totals by Mode – Collected by APTA

lrt_us

This passenger shift from bus transit to rail transit has also been experienced elsewhere. Researchers Shin Lee and Martyn Senior of Cardiff University (Do light rail services discourage car ownership and use? concluded thatGrowing rail shares in the light rail corridors have mainly come from buses and the evidence for light rail reducing car use is less clear. This latter finding is of particular significance, given that a major justification for investment in light rail rather than bus schemes is their presumed ability to bring about major modal shift by attracting substantial numbers of car users.

“There’s just the little problem of the evidence. With few exceptions, studies tend to find limited signs that transit has much of an impact on nearby road congestion. Some places see slight congestion gains or mileage declines in the short term, and well-designed service should lay the foundation for reduced car-reliance in the long run, but the direct transit-traffic link is tenuous at best.” Eric Jaffe, City Labs, Public Transit Does Not Have to Reduce Traffic Congestion to Succeed

So what happens if we don’t build the light rail project?

The mean travel time to work according to the 2014 US Census is 21.5 minutes (Durham County) and 22.0 minutes (Orange County). So what happens to travel times if we do not implement the DOLRT project? According to the DCHC MPO Alternatives Analysis, 2040 travel times using Existing+Committed is projected to be 27 minutes.

MPO_EC_travel_timesYet the proposed DOLRT will take 46 minutes (+10 minutes at terminus) . Now include the waiting time for the next train, the time to get to/from the station (via Park&Ride, Kiss&Ride, bicycle, walking, or bus transfer), it will even be LONGER. So how is this faster than the automobile that it is supposed to replace?

But it’s still more efficient than other alternatives?

The latest revised DOLRT optimistically projects 27,000 daily boardings (with NCCU extension in 2040) during 18.5 hours of daily operation across the 17.7-mile circuit (at a cost of $2.5 BILLION or $141 million per mile) to serve an average 730 passengers per hour (on each track). While advocates will argue that LRT has higher ‘capacity’, it will not necessarily mean that it has higher ‘usage.’ We should not confuse capacity with usage.

So how does that compare to the much hated highway? Well, not so well. A typical highways can accommodate 2,200 vehicles per lane per hour (human driven), utilizing about 5% of roadway capacity. And you can place 4 lanes within the same 50′ right-of-way required for DOLRT.

no_build_cap.jpg

And as autonomous vehicles become pervasive, this capacity will increase significantly, as the vehicles will be able to drive in much closer proximity thereby dramatically increasing the capacity of our existing roadway infrastructure. By using BRT, we will be able to organically add to this capacity; whereas with LRT relying on a roadway of steel rails, we will not, as it will be dedicated solely for the train and we will not be able to share with other autonomous vehicles.